• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Chakrabarty, Souvik
    Ouyang, Christine
    Krysak, Marie
    Trikeriotis, Markos
    Cho, Kyoungyoung
    Giannelis, Emmanuel P.
    Ober, Christopher K.
    Date
    2013-04-01
    Permanent link to this record
    http://hdl.handle.net/10754/599125
    
    Metadata
    Show full item record
    Abstract
    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.
    Citation
    Chakrabarty S, Ouyang C, Krysak M, Trikeriotis M, Cho K, et al. (2013) Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning. Extreme Ultraviolet (EUV) Lithography IV. Available: http://dx.doi.org/10.1117/12.2011490.
    Sponsors
    The authors gratefully acknowledge SEMATECH for funding, as well as the Cornell Nanoscale Science and TechnologyFacility (CNF), Cornell Center of Materials Research (CCMR), the Nanobiotechnology Center (NBTC) and theKAUST-Cornell Center of Energy and Sustainability (KAUST_CU) for use of their facilities.
    Publisher
    SPIE-Intl Soc Optical Eng
    Journal
    Extreme Ultraviolet (EUV) Lithography IV
    DOI
    10.1117/12.2011490
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.2011490
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.