• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO 2 from First-Principles Calculations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Harb, Moussab cc
    Sautet, P.
    Raybaud, P.
    KAUST Grant Number
    UK-C0017
    Date
    2011-09-13
    Online Publication Date
    2011-09-13
    Print Publication Date
    2011-10-06
    Permanent link to this record
    http://hdl.handle.net/10754/599118
    
    Metadata
    Show full item record
    Abstract
    Extension of the absorption properties of TiO2 photocatalytic materials to the visible part of the solar spectrum is of major importance for energy and cleaning up applications. We carry out a systematic study of the N-doped anatase TiO2 material using spin-polarized density functional theory (DFT) and the range-separated hybrid HSE06 functional. The thermodynamic stability of competitive N-doped TiO2 structural configurations is studied as a function of the oxygen chemical potential and of various chemical doping agents: N2, (N2 + H2), NH3, N2H4. We show that the diamagnetic TiO (2-3x)N2x system corresponding to a separated substitutional N species (with 2-4% N impurities) and formation of one-half concentration of O vacancies (1-2 atom %) is an optimal configuration thermodynamically favored by NH3, N2H4, and (N2 + H2) chemical doping agents presenting a dual nitrating-reducing character. The simulated UV-vis absorption spectra using the perturbation theory (DFPT) approach demonstrates unambiguously that the diamagnetic TiO(2-3x)N2x system exhibits the enhanced optical absorption in N-doped TiO2 under visible-light irradiation. Electronic analysis further reveals a band gap narrowing of 0.6 eV induced by delocalized impurity states located at the top of the valence band of TiO 2. A fruitful comparison with experimental data is furnished. © 2011 American Chemical Society.
    Citation
    Harb M, Sautet P, Raybaud P (2011) Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO 2 from First-Principles Calculations . The Journal of Physical Chemistry C 115: 19394–19404. Available: http://dx.doi.org/10.1021/jp204059q.
    Sponsors
    This work was supported by Award No. UK-C0017, made by King Abdullah University of Science and Technology (KAUST). The authors thank E. Puzenat (IRCELYON) for fruitful discussion.
    Publisher
    American Chemical Society (ACS)
    Journal
    The Journal of Physical Chemistry C
    DOI
    10.1021/jp204059q
    ae974a485f413a2113503eed53cd6c53
    10.1021/jp204059q
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.