Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem
Type
ArticleKAUST Grant Number
KUK-I1-007-43Date
2012-11-09Online Publication Date
2012-11-09Print Publication Date
2013-11Permanent link to this record
http://hdl.handle.net/10754/599097
Metadata
Show full item recordAbstract
We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods for finite-dimensional problems. While for the latter several optimality bounds are known, to our knowledge no such bounds exist in the infinite-dimensional setting. We provide such a bound by analyzing a probabilistic rounding method, showing that it is possible to obtain an integral solution of the original partitioning problem from a solution of the relaxed problem with an a priori upper bound on the objective. The approach has a natural interpretation as an approximate, multiclass variant of the celebrated coarea formula. © 2012 Springer Science+Business Media New York.Citation
Lellmann J, Lenzen F, Schnörr C (2012) Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. J Math Imaging Vis 47: 239–257. Available: http://dx.doi.org/10.1007/s10851-012-0390-7.Sponsors
This publication is partly based on work supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST).Publisher
Springer Natureae974a485f413a2113503eed53cd6c53
10.1007/s10851-012-0390-7