• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    GOSWAMI, DEEPJYOTI
    PANI, AMIYA K.
    YADAV, SANGITA
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2014-06-05
    Online Publication Date
    2014-06-05
    Print Publication Date
    2014-01
    Permanent link to this record
    http://hdl.handle.net/10754/599092
    
    Metadata
    Show full item record
    Abstract
    AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.
    Citation
    GOSWAMI D, PANI AK, YADAV S (2014) OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA. The ANZIAM Journal 55: 245–266. Available: http://dx.doi.org/10.1017/S1446181114000030.
    Sponsors
    The first author would like to thank CSIR, Government of India, as well as INCTMat/CAPES (http://inctmat.impa.br) for financial support. The second author gratefully acknowledges the research support of the Department of Science and Technology, Government of India, under DST-CNPq Indo-Brazil Project-DST/INT/Brazil/RPO-05/2007 (Grant No. 490795/2007-2). The third author would like to acknowledge the financial support of MHRD, India. This publication is also based on work supported in part by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Cambridge University Press (CUP)
    Journal
    The ANZIAM Journal
    DOI
    10.1017/S1446181114000030
    ae974a485f413a2113503eed53cd6c53
    10.1017/S1446181114000030
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.