Show simple item record

dc.contributor.authorPestana, Jennifer
dc.date.accessioned2016-02-25T13:51:55Z
dc.date.available2016-02-25T13:51:55Z
dc.date.issued2014-01
dc.identifier.citationPestana J (2014) On the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices. SIAM Journal on Matrix Analysis and Applications 35: 517–525. Available: http://dx.doi.org/10.1137/130920897.
dc.identifier.issn0895-4798
dc.identifier.issn1095-7162
dc.identifier.doi10.1137/130920897
dc.identifier.urihttp://hdl.handle.net/10754/599051
dc.description.abstractBlock lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related. © 2014 Society for Industrial and Applied Mathematics.
dc.description.sponsorshipThis work was supported by award KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.subjectBlock triangular preconditioner
dc.subjectConvergence
dc.subjectEigenvalues
dc.subjectEigenvectors
dc.subjectIterative method
dc.subjectSaddle point system
dc.titleOn the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices
dc.typeArticle
dc.identifier.journalSIAM Journal on Matrix Analysis and Applications
dc.contributor.institutionUniversity of Oxford, Oxford, United Kingdom
kaust.grant.numberKUK-C1-013-04


This item appears in the following Collection(s)

Show simple item record