• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Xu, Liren cc
    Rungta, Meha
    Brayden, Mark K.
    Martinez, Marcos V.
    Stears, Brien A.
    Barbay, Gregory A.
    Koros, William J.
    Date
    2012-12
    Permanent link to this record
    http://hdl.handle.net/10754/599031
    
    Metadata
    Show full item record
    Abstract
    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.
    Citation
    Xu L, Rungta M, Brayden MK, Martinez MV, Stears BA, et al. (2012) Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. Journal of Membrane Science 423-424: 314–323. Available: http://dx.doi.org/10.1016/j.memsci.2012.08.028.
    Sponsors
    The authors gratefully thank The Dow Chemical Company for providing funds and technical supports. The authors also acknowledge the additional support provided by King Abdullah University of Science and Technology (KAUST). The authors also thank Dr. Junqiang Liu for help in measuring the butane isomers transport properties in 6FDA-DAM polymer hollow fiber membranes.
    Publisher
    Elsevier BV
    Journal
    Journal of Membrane Science
    DOI
    10.1016/j.memsci.2012.08.028
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.memsci.2012.08.028
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.