• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Leonard, J. T. cc
    Cohen, D. A.
    Yonkee, B. P.
    Farrell, R. M.
    Margalith, T.
    Lee, S. cc
    DenBaars, S. P. cc
    Speck, J. S.
    Nakamura, S.
    Date
    2015-07-06
    Permanent link to this record
    http://hdl.handle.net/10754/599003
    
    Metadata
    Show full item record
    Abstract
    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm$^{2}$), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.
    Citation
    Leonard JT, Cohen DA, Yonkee BP, Farrell RM, Margalith T, et al. (2015) Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Applied Physics Letters 107: 011102. Available: http://dx.doi.org/10.1063/1.4926365.
    Sponsors
    The authors would like to thank Mitsubishi Chemical Corporation for providing high-quality free-standing m-plane GaN substrates, Tony Bosch at the UCSB Nanofabrication facility for e-beam system support, Nina Hong at J. Woolam for ellipsometer modeling expertise, and Daniel F. Feezell at the University of New Mexico for general discussions on VCSELs. This work was funded in part by the King Abdulaziz City for Science and Technology (KACST) Technology Innovations Center (TIC) program, and the Solid State Lighting and Energy Electronics Center (SSLEEC) at the University of California, Santa Barbara (UCSB). Partial funding for this work came from Professor Boon S. Ooi at King Abdullah University of Science and Technology (KAUST), through his participation in the KACST-TIC program. A portion of this work was done in the UCSB nanofabrication facility, with support from the NSF NNIN network (ECS-03357650), as well as the UCSB Materials Research Laboratory (MRL), which is supported by the NSF MRSEC program (DMR-1121053).
    Publisher
    AIP Publishing
    Journal
    Applied Physics Letters
    DOI
    10.1063/1.4926365
    ae974a485f413a2113503eed53cd6c53
    10.1063/1.4926365
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.