• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Nonparametric Inference for Periodic Sequences

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Sun, Ying cc
    Hart, Jeffrey D.
    Genton, Marc G. cc
    Date
    2012-02
    Permanent link to this record
    http://hdl.handle.net/10754/599001
    
    Metadata
    Show full item record
    Abstract
    This article proposes a nonparametric method for estimating the period and values of a periodic sequence when the data are evenly spaced in time. The period is estimated by a "leave-out-one-cycle" version of cross-validation (CV) and complements the periodogram, a widely used tool for period estimation. The CV method is computationally simple and implicitly penalizes multiples of the smallest period, leading to a "virtually" consistent estimator of integer periods. This estimator is investigated both theoretically and by simulation.We also propose a nonparametric test of the null hypothesis that the data have constantmean against the alternative that the sequence of means is periodic. Finally, our methodology is demonstrated on three well-known time series: the sunspots and lynx trapping data, and the El Niño series of sea surface temperatures. © 2012 American Statistical Association and the American Society for Quality.
    Citation
    Sun Y, Hart JD, Genton MG (2012) Nonparametric Inference for Periodic Sequences. Technometrics 54: 83–96. Available: http://dx.doi.org/10.1080/00401706.2012.650499.
    Sponsors
    Professor Hart's research was supported in part by NSF grant DMS-0604801. Professor Genton's research was partially supported by NSF (National Science Foundation) grant DMS1007504, and award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
    Publisher
    Informa UK Limited
    Journal
    Technometrics
    DOI
    10.1080/00401706.2012.650499
    ae974a485f413a2113503eed53cd6c53
    10.1080/00401706.2012.650499
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.