Show simple item record

dc.contributor.authorAragón, J. L.
dc.contributor.authorBarrio, R. A.
dc.contributor.authorWoolley, T. E.
dc.contributor.authorBaker, R. E.
dc.contributor.authorMaini, P. K.
dc.date.accessioned2016-02-25T13:50:41Z
dc.date.available2016-02-25T13:50:41Z
dc.date.issued2012-08-08
dc.identifier.citationAragón JL, Barrio RA, Woolley TE, Baker RE, Maini PK (2012) Nonlinear effects on Turing patterns: Time oscillations and chaos. Phys Rev E 86. Available: http://dx.doi.org/10.1103/PhysRevE.86.026201.
dc.identifier.issn1539-3755
dc.identifier.issn1550-2376
dc.identifier.pmid23005839
dc.identifier.doi10.1103/PhysRevE.86.026201
dc.identifier.urihttp://hdl.handle.net/10754/598988
dc.description.abstractWe show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examine the Turing conditions for obtaining a diffusion-driven instability and show that the patterns obtained are not necessarily stationary for certain values of the diffusion coefficients. These results demonstrate the limitations of the linear analysis for reaction-diffusion systems. © 2012 American Physical Society.
dc.description.sponsorshipThis work was supported by CONACyT and DGAPA-UNAM, Mexico, under Grants No. 79641 and No. IN100310-3, respectively, and was based on work supported in part by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
dc.publisherAmerican Physical Society (APS)
dc.titleNonlinear effects on Turing patterns: Time oscillations and chaos
dc.typeArticle
dc.identifier.journalPhysical Review E
dc.contributor.institutionUniversidad Nacional Autonoma de Mexico, Mexico City, Mexico
dc.contributor.institutionUniversity of Oxford, Oxford, United Kingdom
kaust.grant.numberKUK-C1-013-04


This item appears in the following Collection(s)

Show simple item record