• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Nonlinear Cross-Diffusion with Size Exclusion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Burger, Martin
    Di Francesco, Marco
    Pietschmann, Jan-Frederik
    Schlake, Bärbel
    Date
    2010-01
    Permanent link to this record
    http://hdl.handle.net/10754/598987
    
    Metadata
    Show full item record
    Abstract
    The aim of this paper is to investigate the mathematical properties of a continuum model for diffusion of multiple species incorporating size exclusion effects. The system for two species leads to nonlinear cross-diffusion terms with double degeneracy, which creates significant novel challenges in the analysis of the system. We prove global existence of weak solutions and well-posedness of strong solutions close to equilibrium. We further study some asymptotics of the model, and in particular we characterize the large-time behavior of solutions. 2010 © Society for Industrial and Applied Mathematics.
    Citation
    Burger M, Di Francesco M, Pietschmann J-F, Schlake B (2010) Nonlinear Cross-Diffusion with Size Exclusion. SIAM J Math Anal 42: 2842–2871. Available: http://dx.doi.org/10.1137/100783674.
    Sponsors
    The authors acknowledge financial support from Volkswagen Stiftung via the grant Multiscale simulation of ion transport through biological and synthetic channels. The first author was further supported by the German Science Foundation DFG via project DFG BU 3227/2-1.This author was partially supported by the KAUST Investigator Award of Peter Markowich, and by the Italian MIUR under the PRIN program "Nonlinear Systems of Conservation Laws and Fluid Dynamics."This author was partially supported by the KAUST Investigator Award of Peter Markowich, as well as by the Leverhulme Trust through the Research Grant entitled Kinetic and mean field partial differential models for socio-economic processes (PI Peter Markowich).
    Publisher
    Society for Industrial & Applied Mathematics (SIAM)
    Journal
    SIAM Journal on Mathematical Analysis
    DOI
    10.1137/100783674
    ae974a485f413a2113503eed53cd6c53
    10.1137/100783674
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.