Show simple item record

dc.contributor.authorHertzberg, J. B.
dc.contributor.authorOtelaja, O. O.
dc.contributor.authorYoshida, N. J.
dc.contributor.authorRobinson, R. D.
dc.date.accessioned2016-02-25T13:50:31Z
dc.date.available2016-02-25T13:50:31Z
dc.date.issued2011-11-02
dc.identifier.citationHertzberg JB, Otelaja OO, Yoshida NJ, Robinson RD (2011) Non-equilibrium phonon generation and detection in microstructure devices. Review of Scientific Instruments 82: 104905. Available: http://dx.doi.org/10.1063/1.3652979.
dc.identifier.issn0034-6748
dc.identifier.pmid22047321
dc.identifier.doi10.1063/1.3652979
dc.identifier.urihttp://hdl.handle.net/10754/598980
dc.description.abstractWe demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ∼200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel junction (STJ). The phonons transiting the structure ballistically are detected by a second STJ, allowing comparison of direct with indirect transport pathways. This method may be applied to study how different phonon modes contribute to the thermal conductivity of nanostructures. © 2011 American Institute of Physics.
dc.description.sponsorshipThe authors thank R. B. Van Dover, J. Blakely, S. Baker, K. Schwab, and Cornell LASSP for loan of key equipment, and L. Spietz for photolithography recipes. We thank R. B. Van Dover, K. Schwab, E. Smith, J. Parpia, D. Ralph, B. Plourde, M. Blencowe, D. Westly, R. Pohl, P. Berberich, and C. Mellor for helpful discussions and thank D. Toledo, J. Chang and A. Lin for help with apparatus. The authors acknowledge funding from the National Science Foundation (NSF) (DMR 0520404) and Department of Energy (DOE) (DE-SC0001086). This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765).
dc.publisherAIP Publishing
dc.titleNon-equilibrium phonon generation and detection in microstructure devices
dc.typeArticle
dc.identifier.journalReview of Scientific Instruments
dc.contributor.institutionCornell University, Ithaca, United States
kaust.grant.numberKUS-C1-018-02
dc.date.published-online2011-11-02
dc.date.published-print2011-10


This item appears in the following Collection(s)

Show simple item record