Show simple item record

dc.contributor.authorChubar, Natalia
dc.date.accessioned2016-02-25T13:50:23Z
dc.date.available2016-02-25T13:50:23Z
dc.date.issued2011-12
dc.identifier.citationChubar N (2011) New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate. Water Science & Technology: Water Supply 11: 505. Available: http://dx.doi.org/10.2166/ws.2011.080.
dc.identifier.issn1606-9749
dc.identifier.doi10.2166/ws.2011.080
dc.identifier.urihttp://hdl.handle.net/10754/598973
dc.description.abstractHighly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.
dc.description.sponsorshipThe research is funded by a King Abdullah University of Science and Technology (KAUST) (www.kaust.edu.sa) Center-in-Development Award to Utrecht University (No KUK-C1-017-12) via the KAUST Global Research Partnership program, which resulted in the formation of the Center for Soil, Water and Coastal Resources (SOWACOR) at Utrecht University: www.sowacor.nl.
dc.publisherIWA Publishing
dc.subjectArsenate
dc.subjectArsenite
dc.subjectBorate
dc.subjectBromate
dc.subjectBromide
dc.subjectFluoride
dc.subjectInorganic ion exchange adsorbents
dc.subjectMg-Al double layered hydrous oxides
dc.subjectSelenate
dc.subjectSelenite
dc.titleNew inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate
dc.typeArticle
dc.identifier.journalWater Science & Technology: Water Supply
dc.contributor.institutionUtrecht University, Utrecht, Netherlands
kaust.grant.numberKUK-C1-017-12


This item appears in the following Collection(s)

Show simple item record