Show simple item record

dc.contributor.authorOvcharenko, Aleksandr
dc.contributor.authorIbanez, Daniel
dc.contributor.authorDelalondre, Fabien
dc.contributor.authorSahni, Onkar
dc.contributor.authorJansen, Kenneth E.
dc.contributor.authorCarothers, Christopher D.
dc.contributor.authorShephard, Mark S.
dc.date.accessioned2016-02-25T13:44:34Z
dc.date.available2016-02-25T13:44:34Z
dc.date.issued2012-03
dc.identifier.citationOvcharenko A, Ibanez D, Delalondre F, Sahni O, Jansen KE, et al. (2012) Neighborhood communication paradigm to increase scalability in large-scale dynamic scientific applications. Parallel Computing 38: 140–156. Available: http://dx.doi.org/10.1016/j.parco.2011.10.013.
dc.identifier.issn0167-8191
dc.identifier.doi10.1016/j.parco.2011.10.013
dc.identifier.urihttp://hdl.handle.net/10754/598964
dc.description.abstractThis paper introduces a general-purpose communication package built on top of MPI which is aimed at improving inter-processor communications independently of the supercomputer architecture being considered. The package is developed to support parallel applications that rely on computation characterized by large number of messages of various sizes, often small, that are focused within processor neighborhoods. In some cases, such as solvers having static mesh partitions, the number and size of messages are known a priori. However, in other cases such as mesh adaptation, the messages evolve and vary in number and size and include the dynamic movement of partition objects. The current package provides a utility for dynamic applications based on two key attributes that are: (i) explicit consideration of the neighborhood communication pattern to avoid many-to-many calls and also to reduce the number of collective calls to a minimum, and (ii) use of non-blocking MPI functions along with message packing to manage message flow control and reduce the number and time of communication calls. The test application demonstrated is parallel unstructured mesh adaptation. Results on IBM Blue Gene/P and Cray XE6 computers show that the use of neighborhood-based communication control leads to scalable results when executing generally imbalanced mesh adaptation runs. © 2011 Elsevier B.V. All rights reserved.
dc.description.sponsorshipThis work is supported by the National Science Foundation under Grant No. 0749152, and by the US Department of Energy under DOE Grant No. DE-FC02-06ER25769. Computing support is provided by King Abdullah University of Science and Technology for granting access to the Blue Gene/P and by National Energy Research Scientific Computing Center for granting access to the Cray XE6 supercomputers.The authors thank Professor William D. Gropp for the valuable comments and clarifications towards the improvement of this study.
dc.publisherElsevier BV
dc.subjectAsynchronous communication
dc.subjectDynamic data migration
dc.subjectMPI
dc.subjectOverlapping communication and computation
dc.subjectParallel algorithms
dc.titleNeighborhood communication paradigm to increase scalability in large-scale dynamic scientific applications
dc.typeArticle
dc.identifier.journalParallel Computing
dc.contributor.institutionRensselaer Polytechnic Institute, Troy, United States
dc.contributor.institutionUniversity of Colorado at Boulder, Boulder, United States


This item appears in the following Collection(s)

Show simple item record