Show simple item record

dc.contributor.authorNugent, Jennifer L.
dc.contributor.authorMoganty, Surya S.
dc.contributor.authorArcher, Lynden A.
dc.date.accessioned2016-02-25T13:44:19Z
dc.date.available2016-02-25T13:44:19Z
dc.date.issued2010-08-20
dc.identifier.citationNugent JL, Moganty SS, Archer LA (2010) Nanoscale Organic Hybrid Electrolytes. Advanced Materials 22: 3677–3680. Available: http://dx.doi.org/10.1002/adma.201000898.
dc.identifier.issn0935-9648
dc.identifier.pmid20665569
dc.identifier.doi10.1002/adma.201000898
dc.identifier.urihttp://hdl.handle.net/10754/598950
dc.description.abstractNanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description.sponsorshipWork on synthesis and mechanical characterization of nanoscale organic hybrid materials (NOHMs) was supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Our research on electrochemical characterization of NOHMs was supported by the Department of Energy Basic Energy Sciences program (Grant DE-FG02-07ER46455)). JN acknowledges support from a National Science Foundation Sustainable Materials IGERT fellowship program at Cornell.
dc.publisherWiley
dc.titleNanoscale Organic Hybrid Electrolytes
dc.typeArticle
dc.identifier.journalAdvanced Materials
dc.contributor.institutionCornell University, Ithaca, United States
kaust.grant.numberKUS-C1-018-02
dc.date.published-online2010-08-20
dc.date.published-print2010-09-01


This item appears in the following Collection(s)

Show simple item record