• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Multivariate Receptor Models for Spatially Correlated Multipollutant Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Jun, Mikyoung
    Park, Eun Sug
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2013-08
    Permanent link to this record
    http://hdl.handle.net/10754/598923
    
    Metadata
    Show full item record
    Abstract
    The goal of multivariate receptor modeling is to estimate the profiles of major pollution sources and quantify their impacts based on ambient measurements of pollutants. Traditionally, multivariate receptor modeling has been applied to multiple air pollutant data measured at a single monitoring site or measurements of a single pollutant collected at multiple monitoring sites. Despite the growing availability of multipollutant data collected from multiple monitoring sites, there has not yet been any attempt to incorporate spatial dependence that may exist in such data into multivariate receptor modeling. We propose a spatial statistics extension of multivariate receptor models that enables us to incorporate spatial dependence into estimation of source composition profiles and contributions given the prespecified number of sources and the model identification conditions. The proposed method yields more precise estimates of source profiles by accounting for spatial dependence in the estimation. More importantly, it enables predictions of source contributions at unmonitored sites as well as when there are missing values at monitoring sites. The method is illustrated with simulated data and real multipollutant data collected from eight monitoring sites in Harris County, Texas. Supplementary materials for this article, including data and R code for implementing the methods, are available online on the journal web site. © 2013 Copyright Taylor and Francis Group, LLC.
    Citation
    Jun M, Park ES (2013) Multivariate Receptor Models for Spatially Correlated Multipollutant Data. Technometrics 55: 309–320. Available: http://dx.doi.org/10.1080/00401706.2013.765321.
    Sponsors
    Mikyoung Jun's research was supported by NSF grant DMS-0906532. Eun Sug Park's research was supported by contract with the Health Effects Institute (HEI), an organization jointly funded by the United States Environmental Protection Agency (EPA) (Assistance Award No. R-82811201) and certain motor vehicle and engine manufacturers. The contents of this article do not necessarily reflect the views of HEI, or its sponsors, nor do they necessarily reflect the views and policies of the EPA or motor vehicle and engine manufacturers. This publication is based in part on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). The authors gratefully acknowledge the help of Ms. Melanie Hotchkiss, Dr. Jim Price, and Dr. Clifford Spiegelman with the acquisition of the 24-hr canister VOC data. The authors also thank the editor, associate editor, and two referees for valuable comments and suggestions that led to substantial improvements in the article.
    Publisher
    Informa UK Limited
    Journal
    Technometrics
    DOI
    10.1080/00401706.2013.765321
    ae974a485f413a2113503eed53cd6c53
    10.1080/00401706.2013.765321
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.