Multiphase modelling of vascular tumour growth in two spatial dimensions
Type
ArticleAuthors
Hubbard, M.E.Byrne, H.M.
KAUST Grant Number
KUK-013-04Date
2013-01Permanent link to this record
http://hdl.handle.net/10754/598907
Metadata
Show full item recordAbstract
In this paper we present a continuum mathematical model of vascular tumour growth which is based on a multiphase framework in which the tissue is decomposed into four distinct phases and the principles of conservation of mass and momentum are applied to the normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal influence on the other phases. Two-dimensional computational simulations are carried out on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations and a finite element scheme with a stable element pair to the generalised Stokes equations derived from momentum balance, leads to a robust algorithm which does not use any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the source terms of the mathematical model.Numerical simulations reveal that this four-phase model reproduces the characteristic pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-vascularised proliferating tumour cells. The simulations consistently predict linear tumour growth rates. The dependence of both the speed with which the tumour grows and the irregularity of the invading tumour front on the model parameters is investigated. © 2012 Elsevier Ltd.Citation
Hubbard ME, Byrne HM (2013) Multiphase modelling of vascular tumour growth in two spatial dimensions. Journal of Theoretical Biology 316: 70–89. Available: http://dx.doi.org/10.1016/j.jtbi.2012.09.031.Sponsors
This publication was based on work supported in part by Award no. KUK-013-04, made by King Abdullah University of Science and Technology (KAUST).Publisher
Elsevier BVJournal
Journal of Theoretical BiologyPubMed ID
23032218ae974a485f413a2113503eed53cd6c53
10.1016/j.jtbi.2012.09.031
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- A multiphase model describing vascular tumour growth.
- Authors: Breward CJ, Byrne HM, Lewis CE
- Issue date: 2003 Jul
- Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.
- Authors: Cai Y, Xu S, Wu J, Long Q
- Issue date: 2011 Jun 21
- Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method.
- Authors: Zheng X, Wise SM, Cristini V
- Issue date: 2005 Mar
- Mathematical modelling, simulation and prediction of tumour-induced angiogenesis.
- Authors: Chaplain MA, Anderson AR
- Issue date: 1996
- Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth.
- Authors: Welter M, Bartha K, Rieger H
- Issue date: 2009 Aug 7