• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bruner, Christopher
    Miller, Nichole C.
    McGehee, Michael D.
    Dauskardt, Reinhold H.
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2013-01-17
    Online Publication Date
    2013-01-17
    Print Publication Date
    2013-06-13
    Permanent link to this record
    http://hdl.handle.net/10754/598879
    
    Metadata
    Show full item record
    Abstract
    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Citation
    Bruner C, Miller NC, McGehee MD, Dauskardt RH (2013) Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices. Advanced Functional Materials 23: 2863–2871. Available: http://dx.doi.org/10.1002/adfm.201202969.
    Sponsors
    This work was partly supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under contract no. DE-FG02-10ER46391 and by the Center for Advanced Molecular Photovoltaics (CAMP) supported by King Abdullah University of Science and Technology (KAUST) under award no. KUS-C1-015-21. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences.
    Publisher
    Wiley
    Journal
    Advanced Functional Materials
    DOI
    10.1002/adfm.201202969
    ae974a485f413a2113503eed53cd6c53
    10.1002/adfm.201202969
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.