Show simple item record

dc.contributor.authorBonito, Andrea
dc.contributor.authorGuermond, Jean-Luc
dc.contributor.authorLee, Sanghyun
dc.date.accessioned2016-02-25T13:42:46Z
dc.date.available2016-02-25T13:42:46Z
dc.date.issued2014-10-31
dc.identifier.citationBonito A, Guermond J-L, Lee S (2014) Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping. Numerical Mathematics and Advanced Applications - ENUMATH 2013: 623–631. Available: http://dx.doi.org/10.1007/978-3-319-10705-9_61.
dc.identifier.issn1439-7358
dc.identifier.issn2197-7100
dc.identifier.doi10.1007/978-3-319-10705-9_61
dc.identifier.urihttp://hdl.handle.net/10754/598869
dc.description.abstract© Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.
dc.description.sponsorshipPartially supported by NSF grant DMS-1254618 and award No. KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST).
dc.publisherSpringer Nature
dc.titleModified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping
dc.typeBook Chapter
dc.identifier.journalNumerical Mathematics and Advanced Applications - ENUMATH 2013
dc.contributor.institutionTexas A and M University, College Station, United States
kaust.grant.numberKUS-C1-016-04
dc.date.published-online2014-10-31
dc.date.published-print2015


This item appears in the following Collection(s)

Show simple item record