• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Modeling of a Permanent Magnet Linear Generator for Wave-Energy Conversion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Tom, Nathan
    Son, Daewoong
    Belissen, Valentin
    Yeung, Ronald W.
    Date
    2015-10-21
    Online Publication Date
    2015-10-21
    Print Publication Date
    2015-05-31
    Permanent link to this record
    http://hdl.handle.net/10754/598857
    
    Metadata
    Show full item record
    Abstract
    © 2015 by ASME. This paper begins with a brief review of the equation of motion for a generic floating body with modification to incorporate the influence of a power-take-off (PTO) unit. Since the damping coefficient is considered the dominant contribution to the PTO reaction force, the optimum non time-varying values are presented for all frequencies, recovering the well-known impedance-matching principle at the resonance condition of the coupled system. The construction of a laboratory-scale permanent magnet linear generator (PMLG), developed at the University of California at Berkeley, is discussed along with the basic electromagnetic equations used to model its performance. Modeling of the PMLG begins with a lumped magnetic circuit analysis, which provides an analytical solution to predict the magnetic flux available for power conversion. The voltage generated across each phase of the stator, induced by the motion of the armature, provides an estimate for the electromagnetic damping as a function of the applied resistive load. The performance of the PMLG and the validation of the proposed analytical model is completed by a set of dry-bench tests. Results from the bench test showed good agreement with the described electromechanical model, thus providing an analytical solution that can assist in further optimization of the PMLG.
    Citation
    Tom N, Son D, Belissen V, Yeung RW (2015) Modeling of a Permanent Magnet Linear Generator for Wave-Energy Conversion. Volume 9: Ocean Renewable Energy. Available: http://dx.doi.org/10.1115/omae2015-42370.
    Sponsors
    Acknowledgement for partial support is made toKAUST/UC-Berkeley Grant #25478 and to the Office ofNaval Research, under Grant No. N00014-09-1-1086, awardedto the correspondence author, who is also grateful to the supportof the American Bureau of Shipping for an Endowed Chair inOcean Engineering at UC-Berkeley.
    Publisher
    ASME International
    Journal
    Volume 9: Ocean Renewable Energy
    DOI
    10.1115/omae2015-42370
    ae974a485f413a2113503eed53cd6c53
    10.1115/omae2015-42370
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.