• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier--Stokes Equations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Tamellini, L.
    Le Maître, O.
    Nouy, A.
    Date
    2014-01
    Permanent link to this record
    http://hdl.handle.net/10754/598850
    
    Metadata
    Show full item record
    Abstract
    In this paper we consider a proper generalized decomposition method to solve the steady incompressible Navier-Stokes equations with random Reynolds number and forcing term. The aim of such a technique is to compute a low-cost reduced basis approximation of the full stochastic Galerkin solution of the problem at hand. A particular algorithm, inspired by the Arnoldi method for solving eigenproblems, is proposed for an efficient greedy construction of a deterministic reduced basis approximation. This algorithm decouples the computation of the deterministic and stochastic components of the solution, thus allowing reuse of preexisting deterministic Navier-Stokes solvers. It has the remarkable property of only requiring the solution of m uncoupled deterministic problems for the construction of an m-dimensional reduced basis rather than M coupled problems of the full stochastic Galerkin approximation space, with m l M (up to one order of magnitudefor the problem at hand in this work). © 2014 Society for Industrial and Applied Mathematics.
    Citation
    Tamellini L, Le Maître O, Nouy A (2014) Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier--Stokes Equations. SIAM Journal on Scientific Computing 36: A1089–A1117. Available: http://dx.doi.org/10.1137/120878999.
    Sponsors
    This author’s work was supported by theItalian grant FIRB-IDEAS (Project RBID08223Z) “Advanced numerical techniques for uncertaintyquantification in engineering and life science problems.” He also received support from the Centerfor ADvanced MOdeling Science (CADMOS).This author’s work was partially supportedby GNR MoMaS (ANDRA, BRGM, CEA, EdF, IRSN, PACEN-CNRS) and by the French NationalResearch Agency (Grants ANR-08-JCJC-0022 and ANR-2010-BLAN-0904) and in part by the U.S.Department of Energy, Office of Advanced Scientific Computing Research, Award DE-SC0007020,and the SRI Center for Uncertainty Quantification at the King Abdullah University of Science andTechnology.This author’s work was partially supported by GNR MoMaS (ANDRA, BRGM, CEA,EdF, IRSN, PACEN-CNRS) and by the French National Research Agency (Grants ANR-08-JCJC-0022 and ANR-2010-BLAN-0904).
    Publisher
    Society for Industrial & Applied Mathematics (SIAM)
    Journal
    SIAM Journal on Scientific Computing
    DOI
    10.1137/120878999
    ae974a485f413a2113503eed53cd6c53
    10.1137/120878999
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.