• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Microstructural and Electronic Origins of Open-Circuit Voltage Tuning in Organic Solar Cells Based on Ternary Blends

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Mollinger, Sonya A.
    Vandewal, Koen
    Salleo, Alberto
    KAUST Grant Number
    KUS-C1–015–21
    Date
    2015-09-22
    Online Publication Date
    2015-09-22
    Print Publication Date
    2015-12
    Permanent link to this record
    http://hdl.handle.net/10754/598834
    
    Metadata
    Show full item record
    Abstract
    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Organic ternary heterojunction photovoltaic blends are sometimes observed to undergo a gradual evolution in open-circuit voltage (Voc) with increasing amounts of a second donor or an acceptor. The Voc is strongly correlated with the energy of the charge transfer state in the blend, but this value depends on both local and mesoscopic orders. In this work, the behavior of Voc in the presence of a wide range of interfacial electronic states is investigated. The key charge transfer state interfaces responsible for Voc in several model systems with varying morphology are identified. Systems consisting of one donor with two fullerene molecules and of one acceptor with a donor polymer of varying regio-regularity are used. The effects from the changing energetic disorder in the material and from the variation due to a law of simple mixtures are quantified. It has been found that populating the higher-energy charge transfer states is not responsible for the observed change in Voc upon the addition of a third component. Aggregating polymers and miscible fullerenes are compared, and it has been concluded that in both cases charge delocalization, aggregation, and local polarization effects shift the lowest-energy charge transfer state distribution. The open-circuit voltage evolution and charge transfer state interfaces in ternary organic photovoltaic blends are investigated using several model systems. The changes in subgap spectra from energetic disorder and increased population of higher energy states are analyzed and the lowest charge transfer state distribution is observed to shift due to local aggregation and delocalization effects.
    Citation
    Mollinger SA, Vandewal K, Salleo A (2015) Microstructural and Electronic Origins of Open-Circuit Voltage Tuning in Organic Solar Cells Based on Ternary Blends. Adv Energy Mater 5: n/a–n/a. Available: http://dx.doi.org/10.1002/aenm.201501335.
    Sponsors
    S.A.M. would like to acknowledge a Benchmark Stanford Graduate Fellowship. K.V. and A.S. acknowledge the Center for Advanced Molecular Photovoltaics (Award No KUS-C1–015–21), made possible by King Abdullah University of Science and Technology (KAUST). A.S. acknowledges financial support from the National Science Foundation (CBET Award 1510481). K.V. acknowledges the Department of Energy, Laboratory Directed Research, and Development funding, under contract DE-AC02-76SF00515. Portions of this research were conducted at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.
    Publisher
    Wiley
    Journal
    Advanced Energy Materials
    DOI
    10.1002/aenm.201501335
    ae974a485f413a2113503eed53cd6c53
    10.1002/aenm.201501335
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.