Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes
Type
ArticleKAUST Grant Number
FIC/2010/08Date
2014-11-07Permanent link to this record
http://hdl.handle.net/10754/598831
Metadata
Show full item recordAbstract
© 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.Citation
Li Y, Tu X, Wang M, Wang H, Sanvito S, et al. (2014) Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes. J Chem Phys 141: 174702. Available: http://dx.doi.org/10.1063/1.4900511.Sponsors
This project was supported by the National Natural Science Foundation of China (No. 61321001) and the MOST of China (Nos. 2011CB933001 and 2013CB933404). S.S. thanks additional funding support from the European Research Council (QUEST project), by KAUST (FIC/2010/08) and by AMBER (12/RC/2278).Publisher
AIP PublishingJournal
The Journal of Chemical PhysicsPubMed ID
25381533ae974a485f413a2113503eed53cd6c53
10.1063/1.4900511
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes.
- Authors: Wang M, Wang Y, Sanvito S, Hou S
- Issue date: 2017 Aug 7
- Effects of spin-orbit coupling on the conductance of molecules contacted with gold electrodes.
- Authors: Zhang R, Ma G, Li R, Qian Z, Shen Z, Zhao X, Hou S, Sanvito S
- Issue date: 2009 Aug 19
- Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes.
- Authors: Chen W, Widawsky JR, Vázquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L
- Issue date: 2011 Nov 2
- Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions.
- Authors: Wang M, Wang H, Zhang G, Wang Y, Sanvito S, Hou S
- Issue date: 2018 May 14
- Low-bias conductance of single benzene molecules contacted by direct Au-C and Pt-C bonds.
- Authors: Ma G, Shen X, Sun L, Zhang R, Wei P, Sanvito S, Hou S
- Issue date: 2010 Dec 10