• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Węgrzyn, Ilona
    Jeffries, Gavin D. M.
    Nagel, Birgit
    Katterle, Martin
    Gerrard, Simon R.
    Brown, Tom
    Orwar, Owe
    Jesorka, Aldo
    Date
    2011-11-16
    Permanent link to this record
    http://hdl.handle.net/10754/598797
    
    Metadata
    Show full item record
    Abstract
    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.
    Citation
    Węgrzyn I, Jeffries GDM, Nagel B, Katterle M, Gerrard SR, et al. (2011) Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles. Journal of the American Chemical Society 133: 18046–18049. Available: http://dx.doi.org/10.1021/ja207536a.
    Sponsors
    This research was supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council (VR), the Swedish Strategic Research Foundation (SSF), the European Research Council (ERC), and the Nordforsk Network for Dynamic Bio-membrane Research. S. R. G. acknowledges financial support from KAUST.
    Publisher
    American Chemical Society (ACS)
    Journal
    Journal of the American Chemical Society
    DOI
    10.1021/ja207536a
    PubMed ID
    21978148
    ae974a485f413a2113503eed53cd6c53
    10.1021/ja207536a
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.