Type
ArticleAuthors
Huang, Bin-JuineTon, Wei-Zhe
Wu, Chen-Chun
Ko, Hua-Wei
Chang, Hsien-Shun
Yen, Rue-Her
Wang, Jiunn-Cherng
KAUST Grant Number
KUK-C1-014-12Date
2012-11Permanent link to this record
http://hdl.handle.net/10754/598779
Metadata
Show full item recordAbstract
The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.Citation
Huang B-J, Ton W-Z, Wu C-C, Ko H-W, Chang H-S, et al. (2012) Maximum-power-point tracking control of solar heating system. Solar Energy 86: 3278–3287. Available: http://dx.doi.org/10.1016/j.solener.2012.08.019.Sponsors
This publication is based on work supported by Award No. KUK-C1-014-12, made by King Abdullah University of Science and Technology (KAUST), Saudi Arabia.Publisher
Elsevier BVJournal
Solar Energyae974a485f413a2113503eed53cd6c53
10.1016/j.solener.2012.08.019
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated items
Showing items related by title, author, creator and subject.
-
Solar energy optimization in solar-HVAC using Sutterby hybrid nanofluid with Smoluchowski temperature conditions: a solar thermal applicationJamshed, Wasim; Eid, Mohamed R; Safdar, Rabia; Pasha, Amjad Ali; Mohamed Isa, Siti Suzilliana Putri; ADIL, MOHAMMAD; Rehman, Zulfiqar; Weera, Wajaree (Scientific reports, Springer Science and Business Media LLC, 2022-07-07) [Article]In solar heating, ventilation, and air conditioning (HVAC), communications are designed to create new 3D mathematical models that address the flow of rotating Sutterby hybrid nanofluids exposed to slippery and expandable seats. The heat transmission investigation included effects such as copper and graphene oxide nanoparticles, as well as thermal radiative fluxing. The activation energy effect was used to investigate mass transfer with fluid concentration. The boundary constraints utilized were Maxwell speed and Smoluchowksi temperature slippage. With the utilization of fitting changes, partial differential equations (PDEs) for impetus, energy, and concentricity can be decreased to ordinary differential equations (ODEs). To address dimensionless ODEs, MATLAB's Keller box numerical technique was employed. Graphene oxide Copper/engine oil (GO-Cu/EO) is taken into consideration to address the performance analysis of the current study. Physical attributes, for example, surface drag coefficient, heat move, and mass exchange are mathematically processed and shown as tables and figures when numerous diverse factors are varied. The temperature field is enhanced by an increase in the volume fraction of copper and graphene oxide nanoparticles, while the mass fraction field is enhanced by an increase in activation energy.
-
Solar Cells: Solvent Additive Effects on Small Molecule Crystallization in Bulk Heterojunction Solar Cells Probed During Spin Casting (Adv. Mater. 44/2013)Perez, Louis A.; Chou, Kang Wei; Love, John A.; van der Poll, Thomas S.; Smilgies, Detlef-M.; Nguyen, Thuc-Quyen; Kramer, Edward J.; Amassian, Aram; Bazan, Guillermo C. (Advanced Materials, Wiley-Blackwell, 2013-11) [Article]
-
The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cellsDupont, Stephanie R.; Voroshazi, Eszter; Heremans, Paul; Dauskardt, Reinhold H. (2012 38th IEEE Photovoltaic Specialists Conference, Institute of Electrical and Electronics Engineers (IEEE), 2012-06) [Conference Paper]We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.