Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries
Type
ArticleKAUST Grant Number
KUS-I1-001-12Date
2010-06-02Online Publication Date
2010-06-02Print Publication Date
2010-07-27Permanent link to this record
http://hdl.handle.net/10754/598719
Metadata
Show full item recordAbstract
Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of ∼30 Ohm/sq. It shows a high specific charge storage capacity (∼2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers ∼10 times improvement in specific capacity compared with widely used graphite/copper anode sheets. © 2010 American Chemical Society.Citation
Cui L-F, Hu L, Choi JW, Cui Y (2010) Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano 4: 3671–3678. Available: http://dx.doi.org/10.1021/nn100619m.Sponsors
The work is partially supported by King Abdullah University of Science and Technology Investigator Award KUS-I1-001-12 (to Y.C.).Publisher
American Chemical Society (ACS)Journal
ACS NanoPubMed ID
20518567ae974a485f413a2113503eed53cd6c53
10.1021/nn100619m
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Nanostructured silicon anodes for lithium ion rechargeable batteries.
- Authors: Teki R, Datta MK, Krishnan R, Parker TC, Lu TM, Kumta PN, Koratkar N
- Issue date: 2009 Oct
- Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications.
- Authors: Rong J, Masarapu C, Ni J, Zhang Z, Wei B
- Issue date: 2010 Aug 24
- Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
- Authors: Wang W, Kumta PN
- Issue date: 2010 Apr 27
- High-performance lithium battery anodes using silicon nanowires.
- Authors: Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y
- Issue date: 2008 Jan
- Thin, flexible secondary Li-ion paper batteries.
- Authors: Hu L, Wu H, La Mantia F, Yang Y, Cui Y
- Issue date: 2010 Oct 26