Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization
Type
ArticleKAUST Grant Number
KUS-C1-018-02Date
2011Permanent link to this record
http://hdl.handle.net/10754/598667
Metadata
Show full item recordAbstract
Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO 2 capture capacity and selectivity via the enthalpic intermolecular interactions between CO2 and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO2 loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO2 capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO2 could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO2 more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO2 absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO2 capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO2 capture. © the Owner Societies 2011.Citation
Park Y, Decatur J, Lin K-YA, Park A-HA (2011) Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization. Physical Chemistry Chemical Physics 13: 18115. Available: http://dx.doi.org/10.1039/c1cp22631b.Sponsors
This publication was based on work supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). We are also grateful to Dr Luis Avila, Ms Dolly Shin and Dr Camille Petit for their help with the ATR FT-IR measurement.Publisher
Royal Society of Chemistry (RSC)PubMed ID
21915411ae974a485f413a2113503eed53cd6c53
10.1039/c1cp22631b
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials.
- Authors: Lin KY, Park AH
- Issue date: 2011 Aug 1
- Design and characterization of liquidlike POSS-based hybrid nanomaterials synthesized via ionic bonding and their interactions with CO2.
- Authors: Petit C, Lin KY, Park AH
- Issue date: 2013 Oct 1
- Spectroscopic Investigation of Entropic Canopy-Canopy Interactions of Nanoparticle Organic Hybrid Materials.
- Authors: Choi S, Moon S, Park Y
- Issue date: 2020 Aug 18
- Effect of water on the physical properties and carbon dioxide capture capacities of liquid-like Nanoparticle Organic Hybrid Materials and their corresponding polymers.
- Authors: Petit C, Bhatnagar S, Park AH
- Issue date: 2013 Oct 1
- Solvent-free nanofluid with three structure models based on the composition of a MWCNT/SiO<sub>2</sub> core and its adsorption capacity of CO<sub>2</sub>.
- Authors: Yang RL, Zheng YP, Wang TY, Li PP, Wang YD, Yao DD, Chen LX
- Issue date: 2018 Jan 19