Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells
dc.contributor.author | Dupont, Stephanie R. | |
dc.contributor.author | Oliver, Mark | |
dc.contributor.author | Krebs, Frederik C. | |
dc.contributor.author | Dauskardt, Reinhold H. | |
dc.date.accessioned | 2016-02-25T13:33:55Z | |
dc.date.available | 2016-02-25T13:33:55Z | |
dc.date.issued | 2012-02 | |
dc.identifier.citation | Dupont SR, Oliver M, Krebs FC, Dauskardt RH (2012) Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells. Solar Energy Materials and Solar Cells 97: 171–175. Available: http://dx.doi.org/10.1016/j.solmat.2011.10.012. | |
dc.identifier.issn | 0927-0248 | |
dc.identifier.doi | 10.1016/j.solmat.2011.10.012 | |
dc.identifier.uri | http://hdl.handle.net/10754/598657 | |
dc.description.abstract | The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V. | |
dc.description.sponsorship | This research was supported by the Center for Advanced Molecular Photovoltaics (CAMP) supported by King Abdullah University of Science and Technology (KAUST) under award no. KUS-C1-015-21, by the Danish Strategic Research Council (2104-07-0022) and EUDP (j. no. 64009-0050). | |
dc.publisher | Elsevier BV | |
dc.subject | Adhesion | |
dc.subject | Flexible | |
dc.subject | Fracture energy | |
dc.subject | Interfaces | |
dc.subject | Polymer solar cells | |
dc.subject | Thin films | |
dc.title | Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells | |
dc.type | Article | |
dc.identifier.journal | Solar Energy Materials and Solar Cells | |
dc.contributor.institution | Stanford University, Palo Alto, United States | |
dc.contributor.institution | Danmarks Tekniske Universitet, Lyngby, Denmark | |
kaust.grant.number | KUS-C1-015-21 | |
kaust.grant.fundedcenter | Center for Advanced Molecular Photovoltaics (CAMP) |