Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

Type
Article

Authors
Dupont, Stephanie R.
Oliver, Mark
Krebs, Frederik C.
Dauskardt, Reinhold H.

KAUST Grant Number
KUS-C1-015-21

Date
2012-02

Abstract
The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

Citation
Dupont SR, Oliver M, Krebs FC, Dauskardt RH (2012) Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells. Solar Energy Materials and Solar Cells 97: 171–175. Available: http://dx.doi.org/10.1016/j.solmat.2011.10.012.

Acknowledgements
This research was supported by the Center for Advanced Molecular Photovoltaics (CAMP) supported by King Abdullah University of Science and Technology (KAUST) under award no. KUS-C1-015-21, by the Danish Strategic Research Council (2104-07-0022) and EUDP (j. no. 64009-0050).

Publisher
Elsevier BV

Journal
Solar Energy Materials and Solar Cells

DOI
10.1016/j.solmat.2011.10.012

Permanent link to this record