Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode
Type
ArticleKAUST Grant Number
KUS-I1-001-12Date
2011Permanent link to this record
http://hdl.handle.net/10754/598629
Metadata
Show full item recordAbstract
Silicon, as an alloy-type anode material, has recently attracted lots of attention because of its highest known Li+ storage capacity (4200 mAh/g). But lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Silicon nanostructures such as nanowires and nanotubes can overcome the pulverization problem, however these nano-engineered silicon anodes usually involve very expensive processes and have difficulty being applied in commercial lithium ion batteries. In this study, we report a novel method using amorphous silicon as inorganic glue replacing conventional polymer binder. This inorganic glue method can solve the loss of contact issue in conventional silicon particle anode and enables successful cycling of various sizes of silicon particles, both nano-particles and micron particles. With a limited capacity of 800 mAh/g, relatively large silicon micron-particles can be stably cycled over 200 cycles. The very cheap production of these silicon particle anodes makes our method promising and competitive in lithium ion battery industry. © 2011 The Electrochemical Society.Citation
Cui L-F, Hu L, Wu H, Choi JW, Cui Y (2011) Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode. J Electrochem Soc 158: A592. Available: http://dx.doi.org/10.1149/1.3560030.Sponsors
The work is partially supported by the Global Climate and Energy Project at Stanford, Office of Naval Research and King Abdullah University of Science and Technology (KAUST) under the Award KUS-I1-001-12 (to Y.C.).Publisher
The Electrochemical Societyae974a485f413a2113503eed53cd6c53
10.1149/1.3560030