• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hardin, Brian E.
    Hoke, Eric T.
    Armstrong, Paul B.
    Yum, Jun-Ho
    Comte, Pascal
    Torres, Tomás
    Fréchet, Jean M. J.
    Nazeeruddin, Md Khaja
    Grätzel, Michael
    McGehee, Michael D.
    Date
    2009-06-21
    Online Publication Date
    2009-06-21
    Print Publication Date
    2009-07
    Permanent link to this record
    http://hdl.handle.net/10754/598610
    
    Metadata
    Show full item record
    Abstract
    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.
    Citation
    Hardin BE, Hoke ET, Armstrong PB, Yum J-H, Comte P, et al. (2009) Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photon 3: 406–411. Available: http://dx.doi.org/10.1038/nphoton.2009.96.
    Sponsors
    The authors thank Y.C. Jun and M.L. Brongersma for access to time–resolved PL measurement equipment and assistance with measurements. B.E.H. would like to thank P. Péchy for his assistance in making the electrolyte. This work was supported by the King Abdullah University of Science and Technology Center for Advanced Molecular Photovoltaics and by the Office of Naval Research contract no. N00014-08-1-1163. B.E.H. received financial support from the National Department of Defense Science and Engineering Graduate Fellowship (NDSEG). E.T.H. is supported by the National Science Foundation GRFP and the Fannie and John Hertz Foundation. J.M.F. is supported by DOEBES contract DE-AC02-05CH11231. Financial support from ESF (SOHYDs), EU (ROBUST DSC, FP7-Energy-2007-1-RTD, 212792), MCyT (CTQ2008-00418/BQU, Consolider-Ingenio 2010 CSD2007-00010), MICINN (FOTOMOL, PSE-120000-2008-3) and CAM (MADRISOLAR, S-0505/PPQ/0225) are also gratefully acknowledged.
    Publisher
    Springer Nature
    Journal
    Nature Photonics
    DOI
    10.1038/nphoton.2009.96
    ae974a485f413a2113503eed53cd6c53
    10.1038/nphoton.2009.96
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.