• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Hong, Seunghyuck
    Shanbhogue, Santosh J.
    Ghoniem, Ahmed F.
    KAUST Grant Number
    KUS-110-010-01
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/598564
    
    Metadata
    Show full item record
    Abstract
    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the dependence of the recirculation zone (RZ) size and structure on the fuel composition using high-speed particle image velocimetry (PIV) and chemiluminescence measurements for C3H8/H2/air lean premixed flames stabilized in a backward-facing step combustor. Results show an intricate coupling between the flame anchoring and the RZ structure and length. For a fixed fuel composition, at relatively low equivalence ratios, the time-averaged RZ is comprised of two counter rotating eddies: a primary eddy (PE) between the shear layer and the bottom wall; and a secondary eddy (SE) between the vertical step wall and the PE. The flame stabilizes downstream of the saddle point of the dividing streamline between the two eddies. As equivalence ratio is raised, the flame moves upstream, pushing the saddle point with it and reducing the size of the SE. Higher temperature of the products reduces the velocity gradient in the shear layer and thus the reattachment length. As equivalence ratio approaches a critical value, the saddle point reaches the step and the SE collapses while the flame starts to exhibit periodic flapping motions, suggesting a correlation between the RZ structure and flame anchoring. The overall trend in the flow field is the same as we add hydrogen to the fuel at a fixed equivalence ratio, demonstrating the impact of fuel composition on the flow field. We show that the reattachment lengths (LR), which are shown to encapsulate the mean RZ structure, measured over a range of fuel composition and equivalence ratio collapse if plotted against the strained consumption speed (Sc). Results indicate that for the flame to remain anchored, the RZ structure should satisfy lR,isothermal/L R,reacting · S c/U ∞ ∼ 0.1. If this criterion cannot be met, the flame blows off, flashes back or becomes thermoacoustically unstable, suggesting a Damköhler-like criterion for aerodynamic flame stabilization in backward-facing step flows.
    Citation
    Hong S, Shanbhogue SJ, Ghoniem AF (2015) Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring. Proceedings of the Combustion Institute 35: 1493–1500. Available: http://dx.doi.org/10.1016/j.proci.2014.05.150.
    Sponsors
    This work was funded by the KAUST Grant No. KUS-110-010-01.
    Publisher
    Elsevier BV
    Journal
    Proceedings of the Combustion Institute
    Conference/Event name
    30th International Symposium on Combustion
    DOI
    10.1016/j.proci.2014.05.150
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.proci.2014.05.150
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.