Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test
Type
ArticleAuthors
Cai, T.Lin, X.
Carroll, R. J.
KAUST Grant Number
KUS-CI-016-04Date
2012-06-25Online Publication Date
2012-06-25Print Publication Date
2012-09-01Permanent link to this record
http://hdl.handle.net/10754/598551
Metadata
Show full item recordAbstract
In recent years, genome-wide association studies (GWAS) and gene-expression profiling have generated a large number of valuable datasets for assessing how genetic variations are related to disease outcomes. With such datasets, it is often of interest to assess the overall effect of a set of genetic markers, assembled based on biological knowledge. Genetic marker-set analyses have been advocated as more reliable and powerful approaches compared with the traditional marginal approaches (Curtis and others, 2005. Pathways to the analysis of microarray data. TRENDS in Biotechnology 23, 429-435; Efroni and others, 2007. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2, 425). Procedures for testing the overall effect of a marker-set have been actively studied in recent years. For example, score tests derived under an Empirical Bayes (EB) framework (Liu and others, 2007. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 63, 1079-1088; Liu and others, 2008. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC bioinformatics 9, 292-2; Wu and others, 2010. Powerful SNP-set analysis for case-control genome-wide association studies. American Journal of Human Genetics 86, 929) have been proposed as powerful alternatives to the standard Rao score test (Rao, 1948. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44, 50-57). The advantages of these EB-based tests are most apparent when the markers are correlated, due to the reduction in the degrees of freedom. In this paper, we propose an adaptive score test which up- or down-weights the contributions from each member of the marker-set based on the Z-scores of their effects. Such an adaptive procedure gains power over the existing procedures when the signal is sparse and the correlation among the markers is weak. By combining evidence from both the EB-based score test and the adaptive test, we further construct an omnibus test that attains good power in most settings. The null distributions of the proposed test statistics can be approximated well either via simple perturbation procedures or via distributional approximations. Through extensive simulation studies, we demonstrate that the proposed procedures perform well in finite samples. We apply the tests to a breast cancer genetic study to assess the overall effect of the FGFR2 gene on breast cancer risk.Citation
Cai T, Lin X, Carroll RJ (2012) Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test. Biostatistics 13: 776–790. Available: http://dx.doi.org/10.1093/biostatistics/kxs015.Sponsors
Research was supported by grants from the National Institute of Health (R01-GM079330 to T. C.) and the National Science Foundation (DMS-0854970 to T. C.); the National Cancer Institute (R37-CA076404 and P01-CA134294 to X. L.); the National Cancer Institute (R37-CA057030 to R.J.C.) and Award Number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST) to R.J.C.Publisher
Oxford University Press (OUP)Journal
BiostatisticsPubMed ID
22734045PubMed Central ID
PMC3440238ae974a485f413a2113503eed53cd6c53
10.1093/biostatistics/kxs015
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- A small-sample multivariate kernel machine test for microbiome association studies.
- Authors: Zhan X, Tong X, Zhao N, Maity A, Wu MC, Chen J
- Issue date: 2017 Apr
- Powerful gene set analysis in GWAS with the Generalized Berk-Jones statistic.
- Authors: Sun R, Hui S, Bader GD, Lin X, Kraft P
- Issue date: 2019 Mar
- An Adaptive Association Test for Multiple Phenotypes with GWAS Summary Statistics.
- Authors: Kim J, Bai Y, Pan W
- Issue date: 2015 Dec
- Powerful SNP-set analysis for case-control genome-wide association studies.
- Authors: Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X
- Issue date: 2010 Jun 11
- Multivariate phenotype association analysis by marker-set kernel machine regression.
- Authors: Maity A, Sullivan PF, Tzeng JY
- Issue date: 2012 Nov