• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Liu, Bing
    Ben, Teng
    Xu, Jun
    Deng, Feng
    Qiu, Shilun
    KAUST Grant Number
    CRG-1-2012-LAI-009
    Date
    2014
    Permanent link to this record
    http://hdl.handle.net/10754/598532
    
    Metadata
    Show full item record
    Abstract
    A microporous organic framework (JUC-Z12) was synthesized quantitatively from tetra(4-formylphenyl)methane and 3,3′-diaminobenzidine. JUC-Z12 shows high thermal stability (>400 °C), a large surface area (SBET = 750 m2 g-1), a well-defined uniform micropore distribution (1.09 nm) and high Qst for H2 (-8.1 kJ mol-1), CO2 (-29.5 kJ mol-1), and CH 4 (-22.2 kJ mol-1). It also exhibits selective catalytic activities in the Knoevenagel reaction, which is supposed to be controlled by hydrogen bonding between substrates and JUC-Z12. The JUC-Z12 catalyst can be easily isolated from the reaction mixture by simple filtration and reused with high activity. This journal is © the Partner Organisations 2014.
    Citation
    Liu B, Ben T, Xu J, Deng F, Qiu S (2014) Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties. New Journal of Chemistry 38: 2292. Available: http://dx.doi.org/10.1039/c4nj00053f.
    Sponsors
    This work was supported by National Natural Science Foundation of China (21390394), the National Basic Research Program of China (2012CB821700, 2011CB808703), NSFC (21261130584, 91022030), "111" project (B07016), Award Project of KAUST (CRG-1-2012-LAI-009) and Ministry of Education, Science and Technology Development Center Project (20120061130012).
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    New Journal of Chemistry
    DOI
    10.1039/c4nj00053f
    ae974a485f413a2113503eed53cd6c53
    10.1039/c4nj00053f
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.