Type
ArticleAuthors
Jeong, SangmooGarnett, Erik C.
Wang, Shuang
Yu, Zongfu
Fan, Shanhui
Brongersma, Mark L.
McGehee, Michael D.
Cui, Yi

KAUST Grant Number
KVS-C1-015-21Date
2012-05-03Online Publication Date
2012-05-03Print Publication Date
2012-06-13Permanent link to this record
http://hdl.handle.net/10754/598528
Metadata
Show full item recordAbstract
Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.Citation
Jeong S, Garnett EC, Wang S, Yu Z, Fan S, et al. (2012) Hybrid Silicon Nanocone–Polymer Solar Cells. Nano Lett 12: 2971–2976. Available: http://dx.doi.org/10.1021/nl300713x.Sponsors
This work is based upon work supported as part of the Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001060. This work was partially supported by the Center for Advanced Molecular Photovoltaics (CAMP) under Award KVS-C1-015-21, made by King Abdullah University of Science and Technology. S.J. acknowledges support from the Korea Foundation for Advanced Studies (KFAS) for graduate fellowship. S.J. thanks Dr. Theodore I. Kamins and Dr. Jonathan D. Servaites for helpful discussions concerning the device fabrication and data analysis.Publisher
American Chemical Society (ACS)Journal
Nano LettersPubMed ID
22545674ae974a485f413a2113503eed53cd6c53
10.1021/nl300713x
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings.
- Authors: Wang KX, Yu Z, Liu V, Cui Y, Fan S
- Issue date: 2012 Mar 14
- Hybrid solar cells from P3HT and silicon nanocrystals.
- Authors: Liu CY, Holman ZC, Kortshagen UR
- Issue date: 2009 Jan
- Light trapping in silicon nanowire solar cells.
- Authors: Garnett E, Yang P
- Issue date: 2010 Mar 10
- Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.
- Authors: Mavrokefalos A, Han SE, Yerci S, Branham MS, Chen G
- Issue date: 2012 Jun 13
- High efficiency hybrid silicon nanopillar-polymer solar cells.
- Authors: Pudasaini PR, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon AA
- Issue date: 2013 Oct 9