High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

Abstract
Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

Citation
Valdes F, Ghaffari-Miab M, Andriulli FP, Cools K, Michielssen (2013) High-Order Calderón Preconditioned Time Domain Integral Equation Solvers. IEEE Transactions on Antennas and Propagation 61: 2570–2588. Available: http://dx.doi.org/10.1109/TAP.2013.2238496.

Acknowledgements
This work was supported in part by the National Science Foundation under Grant 1116082, in part by the AFOSR/NSSEFF Program through Award FA9550-10-1-0180, in art by Sandia under Grant "Development of Calderon Multiplicative Preconditioners with Method of Moments Algorithms", and in part by KAUST under Grant 399813.

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Journal
IEEE Transactions on Antennas and Propagation

DOI
10.1109/TAP.2013.2238496

Permanent link to this record