Show simple item record

dc.contributor.authorSelembo, Priscilla A.
dc.contributor.authorPerez, Joe M.
dc.contributor.authorLloyd, Wallis A.
dc.contributor.authorLogan, Bruce E.
dc.date.accessioned2016-02-25T13:21:18Z
dc.date.available2016-02-25T13:21:18Z
dc.date.issued2009-07
dc.identifier.citationSelembo PA, Perez JM, Lloyd WA, Logan BE (2009) High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. International Journal of Hydrogen Energy 34: 5373–5381. Available: http://dx.doi.org/10.1016/j.ijhydene.2009.05.002.
dc.identifier.issn0360-3199
dc.identifier.doi10.1016/j.ijhydene.2009.05.002
dc.identifier.urihttp://hdl.handle.net/10754/598470
dc.description.abstractThe use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation, at relatively high rates of 2.0 ± 0.4 m3/m3 d (Eap = 0.9 V). Under the same conditions, hydrogen was produced from glucose at a yield of 7.2 mol-H2/mol and a rate of 1.9 ± 0.3 m3/m3 d. Glycerol was completely removed within 6 h, with 56% of the electrons in intermediates (primarily 1,3-propanediol), with the balance converted to current, intracellular storage products or biomass. Glucose was removed within 5 h, but intermediates (mainly propionate) accounted for only 19% of the electrons. Hydrogen was also produced using the glycerol byproduct of biodiesel fuel production at a rate of 0.41 ± 0.1 m3/m3 d. These results demonstrate that electrohydrogenesis is an effective method for producing hydrogen from either pure glycerol or glycerol byproducts of biodiesel fuel production. © 2009 International Association for Hydrogen Energy.
dc.description.sponsorshipThe authors thank S. Cheng, D. Call, E. Lalaurette, D. Jones, J. Chin and P. Cirino for assistance with experiments and analysis and to Nittany Biodiesel for providing glycerol samples from their biodiesel production. This research was supported in part by Award KUS-11-003-13 by King Abdullah University of Science and Technology (KAUST), the General Electric First-Year Faculty for the Future Fellowship, and the Arthur and Elizabeth Rose Memorial Fellowship.
dc.publisherElsevier BV
dc.subjectBiocatalyzed electrolysis
dc.subjectBiodiesel
dc.subjectElectrohydrogenesis
dc.subjectGlucose
dc.subjectGlycerol
dc.subjectHydrogen
dc.subjectMEC
dc.titleHigh hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells
dc.typeArticle
dc.identifier.journalInternational Journal of Hydrogen Energy
dc.contributor.institutionPennsylvania State University, State College, United States
kaust.grant.numberKUS-11-003-13


This item appears in the following Collection(s)

Show simple item record