• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Selembo, Priscilla A.
    Perez, Joe M.
    Lloyd, Wallis A.
    Logan, Bruce E.
    KAUST Grant Number
    KUS-11-003-13
    Date
    2009-07
    Permanent link to this record
    http://hdl.handle.net/10754/598470
    
    Metadata
    Show full item record
    Abstract
    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation, at relatively high rates of 2.0 ± 0.4 m3/m3 d (Eap = 0.9 V). Under the same conditions, hydrogen was produced from glucose at a yield of 7.2 mol-H2/mol and a rate of 1.9 ± 0.3 m3/m3 d. Glycerol was completely removed within 6 h, with 56% of the electrons in intermediates (primarily 1,3-propanediol), with the balance converted to current, intracellular storage products or biomass. Glucose was removed within 5 h, but intermediates (mainly propionate) accounted for only 19% of the electrons. Hydrogen was also produced using the glycerol byproduct of biodiesel fuel production at a rate of 0.41 ± 0.1 m3/m3 d. These results demonstrate that electrohydrogenesis is an effective method for producing hydrogen from either pure glycerol or glycerol byproducts of biodiesel fuel production. © 2009 International Association for Hydrogen Energy.
    Citation
    Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. International Journal of Hydrogen Energy 34: 5373–5381. Available: http://dx.doi.org/10.1016/j.ijhydene.2009.05.002.
    Sponsors
    The authors thank S. Cheng, D. Call, E. Lalaurette, D. Jones, J. Chin and P. Cirino for assistance with experiments and analysis and to Nittany Biodiesel for providing glycerol samples from their biodiesel production. This research was supported in part by Award KUS-11-003-13 by King Abdullah University of Science and Technology (KAUST), the General Electric First-Year Faculty for the Future Fellowship, and the Arthur and Elizabeth Rose Memorial Fellowship.
    Publisher
    Elsevier BV
    Journal
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2009.05.002
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.ijhydene.2009.05.002
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.