• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    High accuracy mantle convection simulation through modern numerical methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Kronbichler, Martin
    Heister, Timo
    Bangerth, Wolfgang
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2012-08-21
    Online Publication Date
    2012-08-21
    Print Publication Date
    2012-10
    Permanent link to this record
    http://hdl.handle.net/10754/598462
    
    Metadata
    Show full item record
    Abstract
    Numerical simulation of the processes in the Earth's mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth's core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth's mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth's ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.
    Citation
    Kronbichler M, Heister T, Bangerth W (2012) High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International 191: 12–29. Available: http://dx.doi.org/10.1111/j.1365-246X.2012.05609.x.
    Sponsors
    The first author was supported by the Graduate School in Mathematics and Computing (FMB) at Uppsala University, Sweden. The second and third authors are supported in part through the Computational Infrastructure in Geodynamics initiative (CIG), through the National Science Foundation under Award No. EAR-0949446 and The University of California-Davis. This publication is based in part on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). The third author is also supported in part by an Alfred P. Sloan Research Fellowship.Some computations for this paper were performed on the 'Ranger' and 'Lonestar' clusters at the Texas Advanced Computing Center (TACC), and the 'Brazos' and 'Hurr' clusters at the Institute for Applied Mathematics and Computational Science (IAMCS) at Texas A&M University. Ranger was funded by NSF award OCI-0622780, and we used an allocation obtained under NSF award TG-MCA04N026. The authors acknowledge the Texas A&M Supercomputing Facility for providing computing resources on 'Lonestar' useful in conducting the research reported in this paper. Part of Brazos was supported by NSF award DMS-0922866. Hurr is supported by Award No. KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST). Some computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under project p2010002.
    Publisher
    Oxford University Press (OUP)
    Journal
    Geophysical Journal International
    DOI
    10.1111/j.1365-246X.2012.05609.x
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1365-246X.2012.05609.x
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.