• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Jespersen, Michael L.
    Mirau, Peter A.
    von Meerwall, Ernst D.
    Koerner, Hilmar
    Vaia, Richard A.
    Fernandes, Nikhil J.
    Giannelis, Emmanuel P.
    KAUST Grant Number
    KUS-C1-018-02
    Date
    2013-12-02
    Online Publication Date
    2013-12-02
    Print Publication Date
    2013-12-23
    Permanent link to this record
    http://hdl.handle.net/10754/598456
    
    Metadata
    Show full item record
    Abstract
    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.
    Citation
    Jespersen ML, Mirau PA, von Meerwall ED, Koerner H, Vaia RA, et al. (2013) Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials. Macromolecules 46: 9669–9675. Available: http://dx.doi.org/10.1021/ma402002a.
    Sponsors
    Funding provided by the Air Force Office of Scientific Research is gratefully acknowledged. The diffusion portion of this work was supported by the National Science Foundation under Grant No. DMR 04 55117. This publication is based on work supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). A portion of this research was carried out while M.L.J. was a National Research Council Associate at the Air Force Research Laboratory and an employee of UES, Inc. (Dayton). Jeffamines M-2070 and M-600 were generously donated by Huntsman Corporation (Houston, TX). M. Tchoul contributed GPC in support of this study. The authors would like to thank George Fultz and Timothy Reid (University of Dayton Research Institute) for viscosity and ICP-MS data supporting this research. The authors also thankfully acknowledge Dr. Rajiv J. Berry and Phuong T. Ngo (AFRL/RX) for helpful discussions regarding this work. We would like to thank Dr. Alexander Hexemer and Dr. Eric Schaible for guidance, setup, and data collection at beamline 7.3.3 at the Advanced Light Source/ Lawrence Berkley National Laboratory. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231.
    Publisher
    American Chemical Society (ACS)
    Journal
    Macromolecules
    DOI
    10.1021/ma402002a
    ae974a485f413a2113503eed53cd6c53
    10.1021/ma402002a
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.