Show simple item record

dc.contributor.authorvan der Zee, Kristoffer G.
dc.contributor.authorTinsley Oden, J.
dc.contributor.authorPrudhomme, Serge
dc.contributor.authorHawkins-Daarud, Andrea
dc.date.accessioned2016-02-25T13:20:24Z
dc.date.available2016-02-25T13:20:24Z
dc.date.issued2010-10-27
dc.identifier.citationVan der Zee KG, Tinsley Oden J, Prudhomme S, Hawkins-Daarud A (2010) Goal-oriented error estimation for Cahn-Hilliard models of binary phase transition. Numerical Methods for Partial Differential Equations 27: 160–196. Available: http://dx.doi.org/10.1002/num.20638.
dc.identifier.issn0749-159X
dc.identifier.doi10.1002/num.20638
dc.identifier.urihttp://hdl.handle.net/10754/598419
dc.description.abstractA posteriori estimates of errors in quantities of interest are developed for the nonlinear system of evolution equations embodied in the Cahn-Hilliard model of binary phase transition. These involve the analysis of wellposedness of dual backward-in-time problems and the calculation of residuals. Mixed finite element approximations are developed and used to deliver numerical solutions of representative problems in one- and two-dimensional domains. Estimated errors are shown to be quite accurate in these numerical examples. © 2010 Wiley Periodicals, Inc.
dc.description.sponsorshipContract grant sponsor: DOE Multiscale Mathematics; contract grant number: DE-FG02-05ER25701Contract grant sponsor: KAUST; contract grant number: US00003
dc.publisherWiley
dc.subjecta posteriori error estimation
dc.subjectCahn-Hilliard
dc.subjectdiffuse interface
dc.subjectdual Cahn-Hilliard
dc.subjectdual well-posedness
dc.subjecterror-residual equivalence
dc.subjectgoal-oriented error analysis
dc.subjectlinearized adjoint
dc.subjectquantities of interest
dc.titleGoal-oriented error estimation for Cahn-Hilliard models of binary phase transition
dc.typeArticle
dc.identifier.journalNumerical Methods for Partial Differential Equations
dc.contributor.institutionUniversity of Texas at Austin, Austin, United States
kaust.grant.numberUS00003
dc.date.published-online2010-10-27
dc.date.published-print2011-01


This item appears in the following Collection(s)

Show simple item record