• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Codoluto, Stephen C.
    Baumgardner, William J.
    Hanrath, Tobias
    Date
    2010
    Permanent link to this record
    http://hdl.handle.net/10754/598388
    
    Metadata
    Show full item record
    Abstract
    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature of coordinating solvents, surface bound ligands, synthesis duration and temperature. NC synthesis in reaction environments with weakly bound phosphine surface ligand led to the coalescence of nascent particles leading to ensembles with broad lognormal particle diameter distributions. Synthesis in the presence of amine or alkene ligands mitigated particle coalescence. High-resolution transmission electron micrographs revealed that NCs grown in the presence of weak ligands had a high crystal defect density whereas NCs grown in amine solutions were predominantly defect-free. We applied infrared spectroscopy to study the NC surface chemistry and showed that alkene ligands project the NCs from surface oxidation. Photoluminescence spectroscopy measurements showed that alkene ligands passivate surface traps, as indicated by infrared fluorescence, conversely oxidized phosphine and amine passivated NCs did not fluoresce. © 2010 The Royal Society of Chemistry.
    Citation
    Codoluto SC, Baumgardner WJ, Hanrath T (2010) Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals. CrystEngComm 12: 2903. Available: http://dx.doi.org/10.1039/c002820g.
    Sponsors
    This work was supported in part by NSF CBET 0828703 and the KAUST-CU center. TEM and SEM measurements were performed at the Cornell Center for Materials Research. We thank J.J. Choi for assistance with the photoluminescence measurements.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    CrystEngComm
    DOI
    10.1039/c002820g
    ae974a485f413a2113503eed53cd6c53
    10.1039/c002820g
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.