• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Front Propagation in Stochastic Neural Fields

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bressloff, Paul C.
    Webber, Matthew A.
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2012-01
    Permanent link to this record
    http://hdl.handle.net/10754/598374
    
    Metadata
    Show full item record
    Abstract
    We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.
    Citation
    Bressloff PC, Webber MA (2012) Front Propagation in Stochastic Neural Fields. SIAM J Appl Dyn Syst 11: 708–740. Available: http://dx.doi.org/10.1137/110851031.
    Sponsors
    This publication was based on work supported in part by the National Science Foundation (DMS-1120327), the King Abdullah University of Science and Technology (award KUK-C1-013-04), and the Systems Biology Doctoral Training Centre, University of Oxford. We are also grateful for access to the Oxford Supercomputing Center.
    Publisher
    Society for Industrial & Applied Mathematics (SIAM)
    Journal
    SIAM Journal on Applied Dynamical Systems
    DOI
    10.1137/110851031
    ae974a485f413a2113503eed53cd6c53
    10.1137/110851031
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.