• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    From fused aromatics to graphene-like nanoribbons: The effects of multiple terminal groups, length and symmetric pathways on charge transport

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bilić, Ante
    Gale, Julian D.
    Sanvito, Stefano
    KAUST Grant Number
    FIC/2010/08
    Date
    2011-11-17
    Permanent link to this record
    http://hdl.handle.net/10754/598368
    
    Metadata
    Show full item record
    Abstract
    A class of molecular ribbons, with almost-ideal charge transmission, that is weakly dependent on the anchoring structure or electrode crystalline orientation and easy to synthesize has been identified. Charge transport through two sets of aromatic nanoribbons, based on the pyrene and perylene motifs, has been investigated using density functional theory combined with the nonequilibrium Green's function method. The effects of wire length and multiple terminal thiolate groups at the junction with gold leads have been examined. For the oligopyrene series, an exponential drop in the conductance with the increase of the wire length is found. In contrast, the oligoperylene series of nanoribbons, with dual thiolate groups, exhibits no visible length dependence, indicating that the contacts are the principal source of the resistance. Between the Au(001) leads, the transmission spectra of the oligoperylenes display a continuum of highly conducting channels and the resulting conductance is nearly independent of the bias. The predictions are robust against artefacts from the exchange-correlation potential, as evidenced from the self-interaction corrected calculations. Therefore, oligoperylene nanoribbons show the potential to be the almost-ideal wires for molecular circuitry. © 2011 American Physical Society.
    Citation
    Bilić A, Gale JD, Sanvito S (2011) From fused aromatics to graphene-like nanoribbons: The effects of multiple terminal groups, length and symmetric pathways on charge transport. Physical Review B 84. Available: http://dx.doi.org/10.1103/PhysRevB.84.205436.
    Sponsors
    This work was supported by the Flexible Electronics Theme of the CSIRO Future Manufacturing Flagship. A.B. thanks CSIRO for support through the Julius Career Award program. J.D.G. thanks the ARC for funding under the Discovery scheme. The use of the NCI National Facility supercomputers at the ANU is gratefully acknowledged. The SMEAGOL project is sponsored by the Science Foundation of Ireland (Grant No. 07/IN/1945), by KAUST (Project No. FIC/2010/08), and by CRANN.
    Publisher
    American Physical Society (APS)
    Journal
    Physical Review B
    DOI
    10.1103/PhysRevB.84.205436
    ae974a485f413a2113503eed53cd6c53
    10.1103/PhysRevB.84.205436
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.