Show simple item record

dc.contributor.authorWan, Yong
dc.contributor.authorOtsuna, Hideo
dc.contributor.authorChien, Chi-Bin
dc.contributor.authorHansen, Charles
dc.date.accessioned2016-02-25T13:19:06Z
dc.date.available2016-02-25T13:19:06Z
dc.date.issued2012-02
dc.identifier.citationWan Y, Otsuna H, Chien C-B, Hansen C (2012) FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research. 2012 IEEE Pacific Visualization Symposium. Available: http://dx.doi.org/10.1109/PacificVis.2012.6183592.
dc.identifier.doi10.1109/PacificVis.2012.6183592
dc.identifier.urihttp://hdl.handle.net/10754/598346
dc.description.abstract2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.
dc.description.sponsorshipThis publication is based on work supported by Award No.KUS-C1-016-04, made by King Abdullah University of Scienceand Technology (KAUST), DOE SciDAC:VACET, NSFOCI-0906379, NIH-1R01GM098151-01. We also wish to thankthe reviewers for their suggestions, and thank Chems Touatiof SCI for making the demo video.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.titleFluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research
dc.typeConference Paper
dc.identifier.journal2012 IEEE Pacific Visualization Symposium
dc.contributor.institutionUniversity of Utah, Salt Lake City, United States
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record