• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Flow of power-law fluids in fixed beds of cylinders or spheres

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Singh, John P.
    Padhy, Sourav
    Shaqfeh, Eric S. G.
    Koch, Donald L.
    KAUST Grant Number
    KUS-C1-018-02
    Date
    2012-10-29
    Online Publication Date
    2012-10-29
    Print Publication Date
    2012-12
    Permanent link to this record
    http://hdl.handle.net/10754/598341
    
    Metadata
    Show full item record
    Abstract
    An ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman's equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle's disturbance velocity. The latter term results from the interaction of the test particle's velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when n≥ 1 for cylinders and n≥ 2 for spheres. For concentrated random arrays of particles, we adopt an effective medium theory in which the drag force per unit volume in the medium surrounding a test particle is assumed to be proportional to the local volume fraction of the neighbouring particles, which is derived from the hard-particle packing. The predictions of the averaged equations of motion are validated by comparison with simulations of randomly distributed hydrodynamically interacting cylinders. © 2012 Cambridge University Press.
    Citation
    Singh JP, Padhy S, Shaqfeh ESG, Koch DL (2012) Flow of power-law fluids in fixed beds of cylinders or spheres. Journal of Fluid Mechanics 713: 491–527. Available: http://dx.doi.org/10.1017/jfm.2012.471.
    Sponsors
    This work was supported by Award No. KUS-C1-018-02 made by the King Abdullah University of Science and Technology (KAUST).
    Publisher
    Cambridge University Press (CUP)
    Journal
    Journal of Fluid Mechanics
    DOI
    10.1017/jfm.2012.471
    ae974a485f413a2113503eed53cd6c53
    10.1017/jfm.2012.471
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.