• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Floquet stability analysis of viscoelastic flow over a cylinder

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Richter, David
    Shaqfeh, Eric S.G.
    Iaccarino, Gianluca
    Date
    2011-06
    Permanent link to this record
    http://hdl.handle.net/10754/598340
    
    Metadata
    Show full item record
    Abstract
    A Floquet linear stability analysis has been performed on a viscoelastic cylinder wake. The FENE-P model is used to represent the non-Newtonian fluid, and the analysis is done using a modified version of an existing nonlinear code to compute the linearized initial value problem governing the growth of small perturbations in the wake. By measuring instability growth rates over a wide range of disturbance spanwise wavenumbers α, the effects of viscoelasticity were identified and compared directly to Newtonian results.At a Reynolds number of 300, two unstable bands exist over the range 0. ≤ α≤ 10 for Newtonian flow. For the low α band, associated with the "mode A" wake instability, a monotonic reduction in growth rates is found for increasing polymer extensibility L. For the high α band, associated with the "mode B" instability, first a rise, then a significant decrease to a stable state is found for the instability growth rates as L is increased from L= 10 to L= 30. The mechanism behind this stabilization of both mode A and mode B instabilities is due to the change of the base flow, rather than a direct effect of viscoelasticity on the perturbation. © 2011 Elsevier B.V.
    Citation
    Richter D, Shaqfeh ESG, Iaccarino G (2011) Floquet stability analysis of viscoelastic flow over a cylinder. Journal of Non-Newtonian Fluid Mechanics 166: 554–565. Available: http://dx.doi.org/10.1016/j.jnnfm.2011.02.005.
    Sponsors
    The authors would like to acknowledge the Army High Performance Computing Research Center for Agility, Survivability and Informatics, Award No. W911NF-07-2-0027, High Performance Technologies Inc. and Department of the Army (Prime) for partial financial and computational support. In addition, this research has been funded in part by a King Abdullah University of Science and Technology (KAUST) research grant under the KAUST Stanford Academic Excellence Alliance program. Any opinions, findings and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the KAUST University. Finally, the authors acknowledge the following award for providing computing resources that have contributed to the research results reported within this paper: MRI-R2: Acquisition of a Hybrid CPU/GPU and Visualization Cluster for Multidisciplinary Studies in Transport Physics with Uncertainty Quantification (http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0960306) This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
    Publisher
    Elsevier BV
    Journal
    Journal of Non-Newtonian Fluid Mechanics
    DOI
    10.1016/j.jnnfm.2011.02.005
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jnnfm.2011.02.005
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.