Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components
Type
ArticleAuthors
Zhang, SaijuanKrebs-Smith, Susan M.
Midthune, Douglas
Perez, Adriana
Buckman, Dennis W.
Kipnis, Victor
Freedman, Laurence S.
Dodd, Kevin W.
Carroll, Raymond J
KAUST Grant Number
KUS-CI-016-04Date
2011-01-06Permanent link to this record
http://hdl.handle.net/10754/598336
Metadata
Show full item recordAbstract
There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole grains. We demonstrate numerically that our methods lead to increased speed of computation, converge to reasonable solutions, and have the flexibility to be used in either a frequentist or a Bayesian manner.Citation
Zhang S, Krebs-Smith SM, Midthune D, Perez A, Buckman DW, et al. (2011) Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components. The International Journal of Biostatistics 7: 1–32. Available: http://dx.doi.org/10.2202/1557-4679.1267.Sponsors
This paper forms part of the Ph.D. dissertation of the first author at Texas A&M University. The research of Zhang, Perez and Carroll was supported by a grant from the National Cancer Institute (R37-CA057030). This publication is based in part on work supported by Award Number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST).Publisher
Walter de Gruyter GmbHPubMed ID
22848190PubMed Central ID
PMC3406506ae974a485f413a2113503eed53cd6c53
10.2202/1557-4679.1267
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- A bivariate measurement error model for semicontinuous and continuous variables: Application to nutritional epidemiology.
- Authors: Kipnis V, Freedman LS, Carroll RJ, Midthune D
- Issue date: 2016 Mar
- Estimating the Distribution of Dietary Consumption Patterns.
- Authors: Carroll RJ
- Issue date: 2014
- A NEW MULTIVARIATE MEASUREMENT ERROR MODEL WITH ZERO-INFLATED DIETARY DATA, AND ITS APPLICATION TO DIETARY ASSESSMENT.
- Authors: Zhang S, Midthune D, Guenther PM, Krebs-Smith SM, Kipnis V, Dodd KW, Buckman DW, Tooze JA, Freedman L, Carroll RJ
- Issue date: 2011 Jun 1
- Intake_epis_food(): An R Function for Fitting a Bivariate Nonlinear Measurement Error Model to Estimate Usual and Energy Intake for Episodically Consumed Foods.
- Authors: Pérez A, Zhang S, Kipnis V, Midthune D, Freedman LS, Carroll RJ
- Issue date: 2012 Mar 5
- Bayesian Copula Density Deconvolution for Zero-Inflated Data in Nutritional Epidemiology.
- Authors: Sarkar A, Pati D, Mallick BK, Carroll RJ
- Issue date: 2021