• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Yates, Matthew D.
    Cusick, Roland D.
    Logan, Bruce E.
    KAUST Grant Number
    KUS-I1-003-13
    Date
    2013-06-13
    Online Publication Date
    2013-06-13
    Print Publication Date
    2013-09-03
    Permanent link to this record
    http://hdl.handle.net/10754/598299
    
    Metadata
    Show full item record
    Abstract
    Sustainable methods are needed to recycle precious metals and synthesize catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles were closely associated with the cells, occupying potential reductive sites and eliminating the potential for cell reuse. The DMRB Geobacter sulfurreducens was shown here to reduce soluble Pd(II) to Pd(0) nanoparticles primarily outside the cell, reducing the toxicity of metal ions, and allowing nanoparticle recovery without cell destruction that has previously been observed using other microorganisms. Cultures reduced 50 ± 3 mg/L Pd(II) with 1% hydrogen gas (v/v headspace) in 6 h incubation tests [100 mg/L Pd(II) initially], compared to 8 ± 3 mg/L (10 mM acetate) without H2. Acetate was ineffective as an electron donor for palladium removal in the presence or absence of fumarate as an electron acceptor. TEM imaging verified that Pd(0) nanoparticles were predominantly in the EPS surrounding cells in H2-fed cultures, with only a small number of particles visible inside the cell. Separation of the cells and EPS by centrifugation allowed reuse of the cell suspensions and effective nanoparticle recovery. These results demonstrate effective palladium recovery and nanoparticle production using G. sulfurreducens cell suspensions and renewable substrates such as H2 gas. © 2013 American Chemical Society.
    Citation
    Yates MD, Cusick RD, Logan BE (2013) Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens. ACS Sustainable Chem Eng 1: 1165–1171. Available: http://dx.doi.org/10.1021/sc4000785.
    Sponsors
    The authors would like to thank John Cantolina in the Huck Institutes of the Life Sciences for his assistance with TEM imaging. This research was supported by Award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST) and by Award DGE-1255832 to M.D.Y. by the National Science Foundation (NSF) Graduate Student Fellowship Program.
    Publisher
    American Chemical Society (ACS)
    Journal
    ACS Sustainable Chemistry & Engineering
    DOI
    10.1021/sc4000785
    ae974a485f413a2113503eed53cd6c53
    10.1021/sc4000785
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.