Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction
Type
ArticleKAUST Grant Number
KUS-l1-004021Date
2012-02Permanent link to this record
http://hdl.handle.net/10754/598282
Metadata
Show full item recordAbstract
Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.Citation
Oh JE, Clark SM, Wenk H-R, Monteiro PJM (2012) Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction. Cement and Concrete Research 42: 397–403. Available: http://dx.doi.org/10.1016/j.cemconres.2011.11.004.Sponsors
This publication was based on the work supported in part by Award No. KUS-l1-004021, made by King Abdullah University of Science and Technology (KAUST) and by NIST grant 60NANB10D014. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Dr. Anthony R. Kampf for providing the tobermorite used in this work.Publisher
Elsevier BVJournal
Cement and Concrete Researchae974a485f413a2113503eed53cd6c53
10.1016/j.cemconres.2011.11.004