• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Experimental Confirmation of Nonlinear-Model- Predictive Control Applied Offline to a Permanent Magnet Linear Generator for Ocean-Wave Energy Conversion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Tom, Nathan
    Yeung, Ronald W.
    KAUST Grant Number
    25478
    Date
    2015-08-13
    Online Publication Date
    2015-08-13
    Print Publication Date
    2016-04
    Permanent link to this record
    http://hdl.handle.net/10754/598281
    
    Metadata
    Show full item record
    Abstract
    To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.
    Citation
    Tom N, Yeung RW (2015) Experimental Confirmation of Nonlinear-Model- Predictive Control Applied Offline to a Permanent Magnet Linear Generator for Ocean-Wave Energy Conversion. IEEE J Oceanic Eng: 1–15. Available: http://dx.doi.org/10.1109/JOE.2015.2439871.
    Sponsors
    This work was supported in part by the King Abdullah Universityof Science and Technology (KAUST)/University of California Berkeley underGrant 25478; by the U.S. Office of Naval Research under Grant N00014-09-1-1086; and by the American Bureau of Shipping, under an Endowed Chair inOcean Engineering of the correspondence author.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    IEEE Journal of Oceanic Engineering
    DOI
    10.1109/JOE.2015.2439871
    ae974a485f413a2113503eed53cd6c53
    10.1109/JOE.2015.2439871
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.